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CONTROLLED MARKOV

CHAINS



A controlled Markov chain or Markov Decision Process

(MDP for short) {Xn} taking values in a finite state space

S and controlled by a control process {Zn} taking values

in a finite action or control space U satisfies the

‘controlled Markov property’ :

P (Xn+1 = j|Xm, Zm,m ≤ n) = P (Xn+1 = j|Xn, Zn)

= p(j|Xn, Zn) a.s.,

for a controlled transition probability function

(i, j, u) ∈ S2 × U 7→ p(j|i, u) ∈ [0,1],

∑
j
p(j|i, u) = 1 ∀ i ∈ S, u ∈ U.



Intuitively, the choice of control can depend on the past

history, i.e., Xm, Zm,m < n, the current state Xn, and any

independent extraneous randomization. {Zn} is called an

admissible control.

Let N := {0,1,2, · · ·}. If Zn = v(Xn, n) ∀ n ∈ N for some

v : S × N 7→ U , then we say that {Zn} or, by abuse of

terminology, v(·, ·) itself, is a Markov policy (or strategy).

If Zn = v(Xn) ∀n ∈ N for some v(·) : S 7→ U , then {Zn} or

equivalently, v(·), is called a stationary policy. In other

words, a stationary policy is a Markov policy, but with no

explicit dependence on n.



Sometimes we allow for independent randomization in

a Markov or stationary policy, i.e., specify a ϕ : S ×

{0,1,2, · · ·} 7→ P(U) (resp., φ : S 7→ P(U)) so that Zn

is picked with conditional distribution ϕ (resp., φ) given

Xn, conditionally independent of Xm, Zm,m < n, given

Xn. These are called resp., randomized Markov or ran-

domized stationary policies.



In Markov or randomized Markov policies, the control

choice depends only on current state and time which

makes {Xn} a possibly time-inhomogeneous Markov chain.

In randomized stationary or stationary policies, the con-

trol choice depends only on the current state, which

makes {Xn} a time-homogeneous Markov chain.

For simplicity and ease of notation, we assume that every

action is feasible in every state, i.e. the action space U

does not depend on the state.



More general scenario wherein the action space depends

on the state is possible (e.g., in queues where departures

are controlled, they cannot exceed the state, i.e., the

current queue length). The theory we develop needs

only minor modifications to accommodate this.

More precisely, we can have an action space Ui for state

i, i ∈ S. But this can be reduced to the previous case

by replacing each Ui by the common U :=
∏
iUi and re-

defiing the transition probability as the transition proba-

biity

p′(j|i, [u1, u2, · · ·]) := p(j|i, ui).



The objective is to maximize a suitable reward or mini-

mize a suitable cost.

We shall mostly stick to the latter, the treatment of the

former being analogous (with one exception we mention

later).



Some common cost criteria are as follows.

1. Finite horizon cost: Let the ‘time horizon’ T > 0 be

prescribed. Minimize

E

T−1∑
t=0

k(t,Xt, Zt) + h(XT)

 .
Here k : {0,1,2, · · ·} × S ×U 7→ R is called the running

cost function and k(t,Xt, Zt) the running cost.

Likewise, h(XT) is called the terminal cost with XT

as the terminal state.



We can also write the above as

E

 T∑
t=0

k(t,Xt, Zt)


by setting k(T,XT , ZT) = h(XT), but usually the

previous format is preferred.

We can also consider running costs of the type

k(t,Xt, Xt+1, Zt), which are equivalent to

k̄(t,Xt, Zt) :=
∑
j
p(j|Xt, Zt)k(t,Xt, j, Zt).

Similar remarks apply to other cost crteria as well.



2. Infinite horizon discounted cost: Minimize

E

 ∞∑
t=0

αtk(Xt, Zt)


where α ∈ (0,1) is the discount factor. In addition

to ensuring the summability of the series above, it

has practical interpretation: expenditure now is more

costly than expenditure later because of interest

accrued etc. Thus this criterion is popular when money

is involved, usually with α = 1
1+r where r is the

interest rate.



3. Average (or ‘ergodic’) cost: Minimize

lim sup
T↑∞

1

T
E

T−1∑
t=0

k(Xt, Zt)

 .
This is used when short term transients are deemed

unimportant and long term or ‘equilibrium’ behaviour

is of primary interest.



4. Risk-sensitive cost: Minimize

lim sup
T↑∞

1

T
logE

[
e
∑T−1

t=0 k(Xt,Zt)
]

which seeks to minimize the mean exponential growth

rate. This criterion is used when variation around the

mean cost also needs to be accounted for, or when

compounding effects make the criterion more natural,

e.g., in finance.



We call a random variable τ taking values in {0,1,2, · · · ;∞}

a stopping time if the event {τ ≤ n} (equivalently, {τ =

n}) depends only on {Xm, Zm,m ≤ n} for all n ≥ 0.

(Convince yourself that the two definitions are

equivalent.)

There are cost criteria that involve optimization over

stopping times. We take these up later.



We shall denote by Pu for u = [u1, u2, · · ·] the stochastic

matrix whose (i, j)th element is p(j|i, ui).

By abuse of terminology, for a stationary policy v, we

shall denote by Pv the stochastic matrix whose (i, j)th

element is p(j|i, v(i)).

Similar notation is use for a randomized stationary policy

φ where these get replaced by Pφ and
∑
u p(j|i, u)φ(u|i)

respectively.



Dynamic and Linear Programming



Dynamic programming is a general purpose approach to

sequential, multi-stage decision making. In words, the

dynamic programming principle says that the minimum

cost to go at a given stage is the minimum of the ex-

pected sum of the immediate cost and the minimum cost

to go from the next stage∗.

The important thing here is the backward recursion

implicit in this statement. This is best illustrated

by working it out for the finite horizon problem.

∗as perceived in the present stage



Recall the finite horizon cost

E

T−1∑
t=0

k(t,Xt, Zt) + h(XT)

 .
Define the value function V : (t, i) ∈ {0,1, · · · , T} × S 7→

V (t, i) ∈ R as the ‘minimum cost to go’ when you are at

state i at time t. That is,

V (t, i) := minE

T−1∑
m=t

k(m,Xm, Zm) + h(XT)|Xt = i


where the minimum is over all admissible controls

Zm, t ≤ m < T .



Then the dynamic programming principle leads to the

equations

V (t, i) = minE
[
k(t,Xt, Zt) + V (t+1, Xt+1)|Xt = i

]
= minE[k(t,Xt, Zt) +

E
[
V (t+1, Xt+1)|Xm, Zm,m ≤ t

]
|Xt = i]

= minE

k(t,Xt, Zt) +
∑
j
p(j|Xt, Zt)V (t+1, j)|Xt = i


= min

u

k(t, i, u) + ∑
j
p(j|i, u)V (t+1, j)


for t < T , with terminal condition V (T, i) = h(i).



Here, the first equality is from the dynamic programming

principle,

the second by additional conditioning,

the third by the controlled Markov property, and,

the fourth by the fact that Xt = i and minimizing over

Zt reduces to minimizing over u.



The equality between the leftmost and the rightmost ex-

pression constitutes the dynamic programming equation

for this problem, i.e.,

V (t, i) = min
u

k(t, i, u) + ∑
j
p(j|i, u)V (t+1, j)

 ,0 ≤ t ≤ T,

V (T, i) = h(i), i ∈ S.

Note that in the case of finite action spaces, the ‘min’ in

all the equalities exists. If the number of actions is, say,

countably infinite and the ‘min’ does not exist, the same

arguments go through with ‘inf’.



Formal proof: Suppose Xt = i. If we use control u at

time t and from time t+ 1, use an ϵ-optimal control for

initial condition Xt+1, then

V (t, i) ≤ k(t, i, u) + E
[
V (t+1, Xt+1) + ϵ|Xt = i, Zt = u

]
= k(t, i, u) +

∑
j
p(j|i, u)V (t+1, j) + ϵ

=⇒ V (t, i) ≤ min
u

k(t, i, u) + ∑
j
p(j|i, u)V (t+1, j)

 + ϵ

=⇒ V (t, i) ≤ min
u

k(t, i, u) + ∑
j
p(j|i, u)V (t+1, j)

 (∗)

where we let ϵ → 0 using the fact that ϵ > 0 was arbitrary.



If the inequality in (*) is strict for some t, i, then there

exists a δ > 0 such that

V (t, i) + δ ≤ min
u

k(t, i, u) + ∑
j
p(j|i, u)V (t+1, j)



=⇒ V (t, i) + δ ≤ E
[
k(t, i, Zt) + V (t+1, Xt+1)

]
under any admissible {Zn}. Iterating (*),

V (t, i) + δ ≤ E

T−1∑
s=t

k(s,Xs, Zs) + h(XT)|Xt = i

 =⇒

V (t, i) + δ ≤ inf
{Zm}

E

T−1∑
s=t

k(s,Xs, Zs) + h(XT)|Xt = i

 ,
a contradiction. The claim follows.



Next, let v(t, i) minimizer the RHS of the DP equation.

Consider the Markov policy Zt = v(t,Xt). For X0 = i,

V (t,Xt) = k(t,Xt, Zt)+E
[
V (t+1, Xt+1)|Xm,m ≤ t

]
, t < T.

Taking expectations,

E [V (t,Xt)] = E
[
k(t,Xt, Zt) + V (t+1, Xt+1)

]
, t < T.

Summing over t = 0 to T − 1 and canceling common

terms on both sides, we get

V (0, i) = E

T−1∑
t=0

k(t,Xt, Zt) + h(XT)


where we use V (T, j) = h(j) ∀j. So {Zt} is optimal.



Uniqueness of solution: For any solution V (·, ·) of the

dynamic programming equations, we can establish the

last equality for the corresponding choice of {Zt}.

For any other admissible control {Z′
t} and the correspond-

ing state process {X ′
t}, one has ≤ in place of equality

above when {Xt, Zt} are replaced by {X ′
t, Z

′
t}.

Hence V (0, i) is the minimum cost to go from state i at

time 0 for i ∈ S.

A similar argument works for V (t, i), i ∈ S,1 ≤ t < T .



Summarizing,

Theorem The value function is the unique solution to

the dynamic programming equations. Moreover, {Zt} is

optimal if and only if for 0 ≤ t < T ,

Zt ∈ Argmin(k(t,Xt, ·) +
∑
j
p(j|Xt, ·)V (t+1, j)).

The Markov policy v(t, i),0 ≤ t < T, i ∈ S, is optimal for

any initial time t < T and initial state i ∈ S if and only

if v(t, i) minimizes the RHS of the DP equation for all

choices of (t, i).



Thus we have the following recipe for finding the optimal

policy:

1. Solve the DP equation for V (·, ·) by backward recur-

sion starting with the terminal condition V (T, ·) = h(·)
and successively computing V (t, ·) from V (t+1, ·)
using the DP equation.

2. Find the minimizer v(t, i) by explicit minimization in

the DP equation for i ∈ S and 0 ≤ t < T , and set

Zt = v(t,Xt),0 ≤ t < T .



There is also a linear programming formulation for this

problem. Define the ‘occupation measure’

µ(t, i, u) = P (Xt = i, Zt = u).

Setting k(T, i, u) = h(i), ∀u, we can then equivalently

write the cost as:

∑
t,i,u

µ(t, i, u)k(t, i, u).

Let λ(i) := P (X0 = i) ∀i, i.e., λ is the initial distribution

of the state.



Then our optimization problem becomes the LP:

Minimize

∑
t,i,u

µ(t, i, u)k(t, i, u)

subject to:

µ(t, i, u) ≥ 0, (1)∑
i,u

µ(t, i, u) = 1, (2)

∑
u
µ(t+1, i, u) =

∑
j,u

µ(t, j, u)p(i|j, u), 0 ≤ t < T, (3)

∑
u
µ(0, i, u) = λ(i). (4)



That the occupation measure satisfies (1)-(4) is obvious.

For the converse, define the randomized Markov policy

ϕ by

ϕ(u|i, t) :=
µ(t, i, u)∑′
u µ(t, i, u′)

.

Then one can check by induction that the above

constraints lead to

µ(t, i, u) = P (Xt = i, Zt = u) for (Xt, Zt), t ≥ 0,

controlled by the randomized Markov policy ϕ.



On the other hand, one can also check by induction that

for any state-action sequence (Xt, Ut),0 ≤ t ≤ T, the

corresponding occupation measure is exactly the same

as that for the randomized Markov policy ϕ defined by

ϕ(u|i, t) := P (Zt = u|Xt = i).

This is another way of seeing that randomized Markov

policies suffice.



Conditions (1)-(4) completely characterize possible µ,

which therefore form a convex polytope.

Given an optimal solution µ(·, ·, ·), an optimal randomized

Markov policy is given by: pick Zt = u with probability

ϕt(u|Xt) for 0 ≤ t < T , where

ϕt(u|i) :=
µ(t, i, u)∑
u′ µ(t, i, u

′)
.

It can be shown that the extreme points (or ‘corners’)

of this polytope correspond to Markov policies, implying

existence of an optimal Markov policy.



The dual linear program turns out to be:

Maximize
∑
i λ(i)V (0, i) subject to:

V (t, i) ≤ k(t, i, u) +
∑
j
p(j|i, u)V (t+1, j), ∀ i, u, (†)

V (T, i) ≤ h(i).

The optimal V turns out to be precisely the value

function. An optimal Markov policy then is v(t, i) = any

u for which (†) becomes an equality for the optimal V .



Discounted Cost

The infinite horizon discounted cost is given by

E

 ∞∑
t=0

αtk(Xt, Zt)

 (5)

with discount factor 0 < α < 1 and running cost

k : S × U 7→ R.

No ‘terminal time’ =⇒ no simple backward recursion.

But the possible future costs from initial state (say) i

look the same regardless of when you arrive at i.



Thus we can define value function V : S 7→ R, i.e., a

function of state alone, by

V (i) := inf E

 ∞∑
t=0

αtk(Xt, Zt)|X0 = i

 (6)

where the infimum is over all admissible controls.

Dynamic programming principle can be applied as before

to write the corresponding DP equation as

V (i) = min
u

k(i, u) + α
∑
j
p(j|i, u)V (j)

 , i ∈ S. (∗)

This can also be proved formally as for the finite horizon

case by using ‘ϵ-optimal controls’.



Thus with ϵ > 0, for X0 = i, pick control u at time 0 and

an ϵ-optimal control thereafter. Then

V (i) ≤ k(i, u) + E[
∞∑
t=1

αtk(Xt, Zt)|X0 = i]

= k(i, u) + αE[
∞∑
t=1

αt−1k(Xt, Zt)|X0 = i]

≤ k(i, u) + E[α(V (X1) + ϵ)|X0 = i]

≤ k(i, u) + α
∑
j
p(j|i, u)V (j) + ϵ

=⇒ V (i) ≤ min
u

[k(i, u) + α
∑
j
p(j|i, u)V (j)] + ϵ

=⇒ V (i) ≤ min
u

[k(i, u) + α
∑
j
p(j|i, u)V (j)].



If the inequality is strict for some i, then with X0 = i, for

some δ > 0 and any admissible {Zt},

V (i) + δ ≤ min
u

[k(i, u) + α
∑
j
p(j|i, u)V (j)]

≤ E[k(X0, Z0) + αE[V (X1)|X0]|X0 = i]

= E[k(X0, Z0) + αV (X1)|X0 = i]

(iterating) ≤ E[
T∑

t=0
αtk(Xt, Zt) + αT+1V (XT+1|X0 = i]

→ E[
∞∑
t=0

αtk(Xt, Zt)|X0 = i]

=⇒

V (i) + δ ≤ min
{Zt}

E[
∞∑
t=0

αtk(Xt, Zt)|X0 = i] = V (i),

a contradiction. Hence the DP equation holds.



Let V be some solution of this equation. If v(i), i ∈ S, is

a minimizer on the RHS, then for Zt = v(Xt), t ≥ 0, by

arguments analogous to those for the finite horizon case,

E [V (Xt)] = E
[
k(Xt, Zt) + αV (Xt+1)

]
=⇒

E [V (X0)] = E

 T∑
t=0

αtk(Xt, Zt)

 + αT+1E
[
V (XT+1)

]
(by iterating)

T↑∞→ E

 ∞∑
t=0

αtk(Xt, Zt)

 .
For arbitrary (X ′

t, Z
′
t), t ≥ 0, we similarly get

E [V (X0)] ≤ E

 ∞∑
t=0

αtk(Xt, Zt)

 .



Thus V (i) = the minimum discounted cost starting from

i =⇒ V is the unique solution to the DP equation.

Also, a stationary policy Zt = v(Xt), t ≥ 0, is optimal

for any intial condition if and only if v(Xt) minimizes

k(Xt, ·) + α
∑
j p(j|Xt, ·)V (j) for t ≥ 0.

In particular, if we solve the DP equation for V , an

optimal stationary policy can be found by minimizing

its right hand side for each i.



The dynamic programming equation gives V in terms of

itself, i.e., it is a fixed point equation. One algorithm for

solving it is ‘value iteration’ that begins with a guess V0

and successively computes

Vn+1(i) = min
u

k(i, u) + α
∑
j
p(j|i, u)Vn(j)

 , i ∈ S, n ≥ 0.

Subtract from the LHS, resp. RHS of this equation the

LHS, resp. RHS of the DP equation and take absolute

values.



Then

|Vn+1(i)− V (i)| ≤ |min
u

(k(i, u) + α
∑
j
p(j|i, u)Vn(j)) −

min
u

(k(i, u) + α
∑
j
p(j|i, u)V (j))|

≤ max
u

|(k(i, u) + α
∑
j
p(j|i, u)Vn(j)) −

(k(i, u) + α
∑
j
p(j|i, u)V (j))|

= αmax
u

|
∑
j
p(j|i, u)(Vn(j)− V (j))|

≤ αmax
j

|Vn(j)− V (j)|, ∀i

=⇒ max
i

|Vn+1(i)− V (i)| ≤ αmax
i

|Vn(i)− V (i)|

=⇒ max
i

|Vn(i)−V (i)| ≤ αnmax
i

|V0(i)−V (i)| → 0 as n → ∞.



An alternative scheme is ‘policy iteration’, which begins

with an initial guess v0 : S 7→ U for an optimal stationary

policy and at nth iterate, does the following:

Given the current guess vn(·) for the optimal stationary

policy,

1. Solve the linear system

Vn(i) = k(i, vn(i)) + α
∑
j
p(j|i, vn(i))Vn(j), i ∈ S, (7)

for Vn, the value function corresponding to policy vn.



2. Find a stationary policy vn+1 such that

k(i, vn+1(i)) + α
∑
j
p(j|i, vn+1(i))Vn(j) =

min
u

k(i, u) + α
∑
j
p(j|i, u)Vn(j)

 (8)

≤ k(i, vn(i)) + α
∑
j
p(j|i, vn(i))Vn(j) ∀i. (9)

3. Stop if equality holds in (9) and declare vn as an opti-

mal stationary policy, otherwise repeat with n → n+1.

The legitimacy of the termination criterion follows from

the fact that in case of equality, Vn = V .



By arguments similar to those used above, iterating (7),

we see that Vn(i) = the cost under the stationary policy

vn, i.e.,

E

 ∞∑
t=0

αtk(Xt, vn(Xt))|X0 = i

 .
Likewise it follows from (9) that except in the termina-

tion step,

Vn(i) ≥ k(i, vn+1(i)) + α
∑
j
p(j|i, vn+1(i))Vn(j) ∀i

with at least one inequality strict, say the ith.



Iterating, we then get

Vn(i) > E

 ∞∑
t=0

αtk(X ′
t, vn+1(X

′
t))|X0 = i

 = Vn+1(i),

where {X ′
t} is controlled by the stationary policy vn+1.

Thus vn(·) has non-increasing cost as n increases, which

is strictly decreasing in at least one component if vn is

not optimal.

Since there are only finitely many stationary policies(
|U ||S| to be precise

)
, vn converges to an optimal policy

in a finite time.



Next define the discounted occupation measure

µ : (i, u) ∈ S × U 7→ µ(i, u) ∈
[
0, 1

1−α

]
by:

µ(i, u) :=
∞∑
t=0

αtP (Xt = i, Zt = u).

Then the cost becomes
∑
i,u µ(i, u)k(i, u), leading to the

linear program: for initial distribution λ(·),

Minimize
∑
i,u µ(i, u)k(i, u) subject to:

µ(i, u) ≥ 0 ∀ i, u, (10)∑
i,u

µ(i, u) =
1

1− α
, (11)

∑
u
µ(i, u) = λ(i) + α

∑
j,u

p(i|j, u)µ(j, u) ∀i. (12)



As for finite horizon problem, (10)-(12) characterize µ.

If µ∗ is an optimal µ, then the randomized stationary

policy that chooses at state i the control u with

probability µ∗(i,u)∑
a µ

∗(i,a) is optimal.

The set of µ is a nonempty convex polytope whose ex-

treme points can be shown to correspond to stationary

policies. This implies the existence of an optimal

stationary policy.



The dual linear programme is, for initial distribution λ,

Maximize
∑
i λ(i)V (i) subject to

V (i) ≤ k(i, u) + α
∑
j
p(j|i, u)V (j).

Again, when λ(i) > 0 ∀i, the optimal solution coincides

with the value function. The optimal choices of v are

those that achieve equality in the above constraints.

Note that in absence of any irreducibility assumption, if

we drop the condition λ(i) > 0 ∀i, some states may never

be visited and the control choice there is irrelevant, as is

the value function.



Stochastic shortest path

Consider the controlled Markov chain {(Xt, Zt)} as before

with finite state space S decomposed as S = S0∪A with

S0 ∩A = ϕ.

The states in S0 are referred to as nonterminal states

while the states in A are called terminal states.

The set A may be taken to be a set of absorbing states

as will become clear later.



Define the first passage time τ to A as

τ := min{t ≥ 0 : Xt ∈ A},

with the convention τ = ∞ if the set on the right is

empty. Then τ = 0 when X0 ∈ A.

We assume for simplicity that under any stationary policy,

there is a path from any i ∈ S0 to some j ∈ A.

It follows that there exists an integer K ≥ 0 and 1 > δ > 0

such that under any stationary policy,

max
i

P (τ > K|X0 = i) < δ.



If not, then for each δ = 1− 1
n and K = n, there exists a

stationary policy vn(·) such that for some i = in,

P (τ > n|X0 = in) ≥ 1−
1

n

under vn(·).

Passing to the limit along a suitable subsequence, we

can show the existence of a stationary policy v(·) under

which

P (τ > n|X0 = j) = 1

for some j and all n ≥ 1.



That is, there would exist a stationary policy such that

for some j, τ = ∞ with probability 1, a contradiction.

Thus for n ≥ 0,

P (τ > (n+1)K) = P (τ ≥ (n+1)K, τ > nK)

= E[PXKn
(τ > K)I{τ > nK}]

≤ δP (τ > nK).

Iterating, we have

P (τ > nK) ≤ δn.

An important consequence of this is that

E[τ ] =
∞∑
t=0

P (τ ≥ t)



=
∞∑
t=0

K(t+1)−1∑
m=Kt

P (τ ≥ m)

≤
∞∑
t=0

K(t+1)−1∑
m=Kt

P (τ ≥ Kt)

= K
∞∑
t=0

P (τ ≥ Kt)

≤ K
∞∑
t=0

δt

=
K

1− δ
< ∞.



Let k : S0 × U 7→ [0,∞) and h : A 7→ R be prescribed

running cost and terminal cost functions. The objective

is to minimize

E

τ−1∑
t=0

k(Xt, Zt) + h(Xτ)

 .
This is finite under any stationary policy. Just as we

noted for the infinite horizon discounted cost problem,

the cost to go here will depend only on the current state

and not on the clock time t. Therefore we define the

value function as

V (i) := minE

τ−1∑
t=0

k(Xt, Zt) + h(Xτ)|X0 = i

 .



Here the minimum is over all admissible controls, finite

because it is so for stationary policies.

By the dynamic programming principle, we write the

dynamic programming equation by inspection as

V (i) = min
u

[k(i, u) +
∑
j
p(j|i, u)V (j)], i ∈ S0, (13)

V (i) = h(i), i ∈ A. (14)



To prove this formally, let V solve (13)-(14). Let X0 = i,

ϵ > 0 and consider Z0 = u and Zt, t ≥ 1, that is ϵ-optimal

for initial condition X1. Then

V (i) ≤ E[k(i, u)I{τ > 0}+ h(i)I{τ = 0}

+ V (X1)I{τ > 0}+ ϵ]

= E[k(i, u)I{i ∈ S0}+ h(i)I{i ∈ A}

+ V (X1)I{i ∈ S0}+ ϵ].

This leads to V (i) ≤ k(i, u)+
∑
j∈S p(j|i, u)V (j)+ ϵ, i ∈ S0,

with V (i) = h(i), i ∈ A.



Letting ϵ ↓ 0,

V (i) ≤ min
u

[k(i, u) +
∑
j
p(j|i, u)V (j)], i ∈ S0, (15)

V (i) = h(i), i ∈ A. (16)

The DP equation using the DP principle is

V (i) = min
u

[k(i, u) +
∑
j
p(j|i, u)V (j)], i ∈ S0, (17)

V (i) = h(i), i ∈ A. (18)



If the inequality in (17) is strict for some i, there exists

an η > 0 such that

V (i) + η ≤ min
u

[(k(i, u) +
∑
j
p(j|i, u)V (j))I{i ∈ S0}

+ h(i)I{i ∈ A}].

Iterating (17)-(18), we get,

V (i) + η ≤ E[
T∑

t=0
k(Xt, Zt)I{τ > t}+ h(Xτ)I{τ ≤ T}]

+ E[V (X1)I{τ > T}] + ϵ

≤ E[
T∑

t=0
k(Xt, Zt)I{τ > t}+ h(Xτ)I{τ ≤ T}]

+max
j

|V (j)|P (τ > T ) + ϵ



T↑∞→ E[
∞∑
t=0

k(Xt, Zt)I{τ > t}+ h(Xτ)I{τ ≤ ∞}] + ϵ

= E

τ−1∑
t=0

k(Xt, Zt) + h(Xτ)

 + ϵ,

implying, letting ϵ ↓ 0,

V (i) + η ≤ minE

τ−1∑
t=0

k(Xt, Zt) + h(Xτ)|X0 = i

 .
This contradicts the definition of V (i), so equality must

hold in (17)-(18). This proves the DP equation.



Let v(i) minimize the right hand side of (13). Then under

the stationary policy, an iterative argument analogous to

the above leads to

V (i) = E

τ−1∑
t=0

k(Xt, v(Xt)) + h(Xτ)|X0 = i

 ,
implying that v is optimal. The converse, viz., v is opti-

mal for all initial conditions only if it minimizes the right

hand side of (13), is proved similarly (check this).

Any solution of the DP equation must have this repre-

sentation, hence is unique.



The policy iteration algorithm can be written down for

this problem and justified along the same lines as before.



The value iteration algorithm becomes: beginning with

an initial guess V0(·) with V0(i) = h(i) for i ∈ A,

Vn+1(i) = min
u

[k(i, u) +
∑
j
p(j|i, u)Vn(j)], i ∈ S0,

Vn(i) ≡ h(i) ∀ i ∈ A,n ≥ 0.

Since Vn(i) is frozen at h(i) for i ∈ A, we are effectively

iterating V := V restricted to S0 as

Vn+1(i) = min
u

[k(i, u) +
∑

j∈S0

p(j|i, u)Vn(j)

+
∑
j∈A

p(j|i, u)h(j)], i ∈ S0. (19)



Iterating and using (13)-(14), we get, for n ≥ 1,

Vn(i) = min
u

E[k(X0, u)I{τ > 0}+ h(X0)I{τ = 0}

+ Vn−1(X1)I{τ > 1}+ h(X1)I{τ = 1} | X0 = i]

= minE[
n−1∑
t=0

(k(Xt, Zt)I{τ > t}+ h(Xt)I{τ = t})

+ V0(Xn)I{τ > n}+ h(Xn)I{τ = n}|X0 = i].

Here and later, the ‘min’ is over all admissible controls.

Thus

|Vn(i)−minE[
n−1∑
t=0

(k(Xt, Zt)I{τ > t}

+ h(i)I{τ = t})|X0 = i]|

≤ max
i∈S0

|V0(i)|P (τ > n) +max
i

|h(i)|P (τ = n)
n↑∞→ 0.



We have

minE[
n−1∑
t=0

(k(Xt, Zt)I{τ > t}+ h(Xt)I{τ = t})|X0 = i]

= minE[
τ∧(n−1)∑

t=0
k(Xt, Zt) + h(Xτ∧n)|X0 = i],

and

|minE[
τ∧(n−1)∑

t=0
k(Xt, Zt) + h(Xτ∧n)|X0 = i]

−minE[
τ∑

t=0
k(Xt, Zt) + h(Xτ)|X0 = i]|

≤ maxE[|
τ∑

t=0
k(Xt, Zt) + h(Xτ)−

τ∧(n−1)∑
t=0

k(Xt, Zt) + h(Xτ∧n)||X0 = i]



= maxE[|
τ∑

t=τ∧n+1
k(Xt, Zt) + h(Xτ)− h(Xτ∧n)||X0 = i]

→ 0 as n → ∞.

Hence

minE[
τ∧(n−1)∑

t=0
k(Xt, Zt) + h(Xτ∧n)|X0 = i]

n↑∞→

minE[
τ∑

t=0
k(Xt, Zt) + h(Xτ)|X0 = i].

This proves that the value iteration converges to the

value function as desired.



Exercises:

1. Write down the dynamic programming equation for

the finite horizon cost

E

 T∑
m=0

(
m−1∏
k=0

c(Xk, Zk))k(Xm, Zm)


for prescribed T > 0 and c, k : S 7→ R.

2. Write down the LP formulation of the shortest path

problem.



Average cost

Consider again a controlled Markov chain (Xn, Zn) as

before. The objective now is to minimize the long run

average cost (or simply the ‘average cost’) defined by

lim sup
N↑∞

1

N
E

N−1∑
m=0

k(Xn, Zn)

 . (20)

We shall assume that under any stationary policy Zn =

v(Xn) ∀n, the chain is irreducible. Then it has a unique

stationary distribution πv and (20) is in fact a limit a.s.,

which equals
∑
i πv(i)k(i, v(i)) with probability one by the

strong law of large numbers for Markov chains.



It turns out that an optimal stationary policy exists that

is optimal among all policies, so we can confine our

attention to stationary policies alone.

One problem is that the cost involves an asymptotic

arithmetic mean and therefore no finite segment mat-

ters. In particular the ‘one step analysis’ that facilitated

dynamic programming so far does not work.

The classical approach is to consider this problem as

a limiting case of the infinite horizon discounted cost

problem as the discount factor approaches 1 (i.e., no

discount).



We take a direct approach here which is less intuitive,

but is simpler with fewer technicalities. It is based on

the so called Poisson equation

V (i) = f(i)− β +
∑
j
p(j|i)V (j), i ∈ S,

where P = [[p(·|·)]] is the transition probability matrix for

an irreducible Markov chain with stationary distribution

π and f : S 7→ R is a given function.

Both the vector V and the scalar β are unknowns.



Multiplying the equation on both sides by π(i) and sum-

ming over i, we get

∑
i
π(i)V (i) =

∑
i
π(i)f(i)− β +

∑
i
π(i)

∑
j
p(j|i)V (j).

Using the fact π(j) =
∑
i π(i)p(j|i) ∀j, we get β =

∑
i π(i)f(i).

Thus β is uniquely specified by the equation.

Clearly, adding a fixed constant to each V (i) does not

affect the equation, so V is not unique. If V ′ is another

solution, subtracting the equation for V ′ from that for V

and keeping in mind that β is unique, we get

(V − V ′) = P (V − V ′)



Iterating, assuming aperiodicity,

V − V ′ = Pn(V − V ′) → a constant vector.

In general, we can use

V − V ′ =
1

n

n−1∑
m=0

Pm(V − V ′) → a constant vector.

Thus V is unique up to the addition of a constant and

therefore can be rendered unique, e.g., by fixing the value

of one component or fixing its minimum, maximum or

average value, etc.



Now consider the problem of minimizing the cost only

over stationary ramdomized policies. Under a stationary

randomized policy i ∈ S 7→ q(·|i) ∈ {the probability vec-

tors on U}, the chain is an irreducible Markov chain with

transition probabilities
∑
u p(j|i, u)q(u|i).



The problem reduces to an LP over µ(i, u) = πq(i)q(u|i),
where πq is the unique stationary distribution under the

stationary randomized policy q, as decribed below: There

is a one-one correspondence between q and µ satisfying

µ(i, u) ≥ 0,
∑
i,u

µ(i, u) = 1,

∑
u
µ(j, u) =

∑
i,u

µ(i, u)p(j|i, u), ∀j ∈ S.

because given any such µ, it can be written as µ(i, u) =

π(i)q(u|i) where π(i) =
∑
a µ(i, a) and q(u|i) = µ(i, u)/π(i).

Then the above equation becomes

π(j) =
∑
i
π(i)

∑
u
q(u|i)p(j|i, u) ∀j =⇒ π = πq.



Thus the problem reduces to the linear program:

Minimize
∑
i µ(i, u)k(i, u) subject to

∑
i,u

µ(i, u) = 1,

∑
u
µ(j, u) =

∑
i,u

µ(i, u)p(j|i, u), j ∈ S,

µ(i, u) ≥ 0.

This has an optimal solution µ∗. Let q∗, π∗ denote the

corresponding q, π and V ∗, β∗ a solution to the corre-

sponding Poisson equation. That is,

V ∗(i) =
∑
u
k(i, u)q∗(u|i)−β∗+

∑
u,j

p(j|i, u)q∗(u|i)V ∗(j), i ∈ S.

(21)



Then β∗ =
∑
i π

∗(i)
∑
u k(i, u)q∗(u|i) is the optimal cost

(among stationary randomized policies).

Claim: V ∗, β∗ satisfy the dynamic programming equation

for average cost given by

V ∗(i) = min
u

[k(i, u)− β∗ +
∑
j
p(j|i, u)V ∗(j)], i ∈ S. (22)

From (21), we have

V ∗(i) ≥ min
u

[k(i, u)− β∗ +
∑
j
p(j|i, u)V ∗(j)], i ∈ S.

Suppose the inequality is strict for some i.



Then for the stationary policy v(·) such that v(i) attains

the minimum on the right hand side of (22), we have

V ∗(i) ≥ k(i, v(i))− β∗ +
∑
j
p(j|i, v(i))V ∗(j), i ∈ S,

with a strict inequality for at least one i. Multiplying

both sides of the equation by πv(i) and summing over i,

we get

∑
i
πv(i)k(i, v(i)) < β∗,

which contradicts the fact that β∗ is the optimal cost.

Thus equality must hold, i.e., (22) holds.



This also shows that a stationary policy v such that v(i)

minimizes the right hand side of (22) is optimal among

all stationary randomized policies.

Conversely, suppose v is a stationary policy that is opti-

mal among all stationary randomized policies. Then

V ∗(i) ≤ k(i, v(i))− β∗ +
∑
j
p(j|i, v(i))V ∗(j), i ∈ S.

If the inequality is srict for some i, multiplying both sides

by πv(i) and summing over i, we get

∑
i
πv(i)k(i, v(i)) > β∗.



Then v is not optimal among stationary randomized poli-

cies, a contradiction. Thus a stationary policy v is opti-

mal among all stationary randomized policies if and only

if it attains the minimum on the right hand side of (22).

Furthermore, since this minimum is indeed attained at

some u ∈ U for each i, setting v(i) = this u yields a sta-

tionary policy optimal among all stationary randomized

policies. That is, there exists a stationary policy optimal

among all stationary randomized policies.



Now consider an arbitrary admissible control {Zn}. Then

from (22),

E[V ∗(Xm)] ≤ E[k(Xm, Zm)]−β∗+E[V ∗(Xm+1)] ∀ m ≥ 0.

Summing both sides over 0 ≤ m < n, rearranging terms

and dividing through by n, we get

1

n
E

 n−1∑
m=0

k(Xm, Zm)

 − β∗ ≥
E[V ∗(X0)− V ∗(Xn)]

n
→ 0

as n ↑ ∞. Thus no admissible control can give a cost

lower than β∗, and therefore a stationary policy optimal

among all stationary randomized policies is also optimal

among all admissible policies.



Suppose V ′, β′ is another solution pair for (22). That is,

V ′(i) = min
u

[k(i, u)− β′ +
∑
j
p(j|i, u)V ′(j)], i ∈ S.

Argue as for (V ∗, β∗) to conclude that β′ = β∗. The fact

that a stationary policy v is optimal if and only if v(i)

minimizes the right hand side of (22) also follows as be-

fore. Then taking v to be a particular optimal stationary

policy, we have

V ∗(i) = k(i, v(i))− β∗ +
∑
j
p(j|i, v(i))V ∗(j),

V ′(i) = k(i, v(i))− β∗ +
∑
j
p(j|i, v(i))V ′(j), i ∈ S.



Subtracting the second equation from the first, we get

V ∗(i)− V ′(i) =
∑
j
p(j|i, v(i))(V ∗(j)− V ′(j)),

which by familiar arguments, implies that V ∗(·)−V ′(·) ≡ a

constant. Thus V ∗ is unique up to an additive constant.

That this cannot be improved upon follows as for the

Poisson equation: (22) does not change if you add a

constant to all components of V ∗.



The policy iteration algorithm can be written down and

its convergence in finitely many steps can be established

the usual way. Thus one starts with an initial stationary

policy v0(·) and at step n, does:

1. Solve the Poisson equation

Vn(i) = k(i, vn(i))− βn +
∑
j
p(j|i, vn(i))Vn(j), i ∈ S.

2. Pick vn+1(·) such that ∀ i ∈ S, vn+1(i) minimizes

k(i, ·) +
∑
j
p(j|i, ·)Vn(j).



The value iteration algorithm is replaced by the so called

‘relative value iteration’ in absence of any contractivity.

This is given by:

Vn+1(i) = min
u

[k(i, u) +
∑
j
p(j|i, u)Vn(j)]− f(Vn), n ≥ 0,

where f(Vn) is the ‘offset’ that prevents the scheme from

becoming numerically unstable. Choices of f(V ) are:

f(V ) = V (i0) for a fixed state i0, f(V ) = 1
|S|

∑
i∈S V (i),

mini V (i), maxi V (i), etc. Convergence proof of this al-

gorithm is very technical and is omitted.



Alternative approaches:

Can show

V (i) = inf
{Zn}

Ei

 τ−1∑
m=0

(k(Xm, Zm)− β)

 .
One can use RHS as a definition of V and shown that it

satisfies the DP equation by ‘one step analysis’ as in the

case of stochastic shortest path problem. The rest goes

as before.



The classical approach is the vanishing discount argu-

ment, where one uses the dynamic programming equa-

tion for the infinite horizon discunted cost with discount

factor α ∈ (0,1) and define the corresponding value func-

tion Vα(·).

Define

V α(i) = Vα(i)− Vα(i0)

for some i0 ∈ S. Suppose the corresponding chain is

aperiodic. Let v∗α(·) denote an optimal stationary policy

for this discounted problem.



Let {Xn}, {X ′
n} be independent Markov chains initiated at

i, i0, resp., controlled by v∗(·) and, glued together when

they first meet, i.e, at τ := min{n ≥ 0 : Xn = X ′
n} denote

this coupling time. Assume aperiodicity. Then for some

K > 0,

V α(i)

= Vα(i)− Vα(i0)

= E

 ∞∑
m=0

αm(k(Xm, v∗α(Xm))− k(X ′
m, v∗α(X

′
m))


= E

 τ−1∑
m=0

αm(k(Xm, v∗α(Xm))− k(X ′
m, v∗α(X

′
m))


≤ KE[τ ] < ∞.



Thus V α(·) converges to some V (·) along a subsequence

as α ↑ 1.

Since (1−α)Vα(i0) clearly remains bounded by maxi,u |k(i, u)|

as α ↑ 1, we can take a further subsequence along which

(1 − α)Vα(i0) → β′ (say). Recall the DP equation for

discounted cost :

Vα(i) = min
u

k(i, u) + α
∑
j
p(j|i, )Vα(j)

 .



Then V α(·) satisfies

V α(i) = min
u

k(i, u) + α
∑
j
p(j|i, u)V (j)

 − (1− α)Vα(i0).

Letting α ↑ 1 along the above subsequence, we have

V (i) = min
u

k(i, u)− β′ +
∑
j
p(j|i, u)V (j)

 .
which is the DP equation for average cost.

The proof can be easily adapted if {Xn} is periodic.



Multichain problems: Drop irreducibility. Let βj denote

the minimum cost starting from j. Then we have the

following DP:

βi = min
u

p(j|i, u)βj ∀i, u,

V (i) = min
u∈Bi

k(i, u)− βi +
∑
j
p(j|i, u)V (j)

 ∀i, u,

where Bi := the set of minimizers in the first equation.

The primal LP is: Maximize
∑
i βi subject to

βi ≤
∑
j
p(j|i, u)βj ∀i, u,

V (i) ≤ k(i, u)− βi +
∑
j
p(j|i, u)V (j) ∀i, u.



The dual program is: Minimize
∑
i,u µ(i, u)k(i, u) subject

to

∑
u
µ(i, u) =

∑
j,u

p(i|j, u)µ(j, u) ∀i,
∑
u
µ(i, u) +

∑
u
ν(i, u) =

∑
j,u

p(i|j, u)ν(j, u) + 1 ∀i,

µ(i, u), ν(i, u) ≥ 0 ∀i, u,
∑
i,u

µ(i, u) = 1.



Risk-sensitive control

Risk-sensitive control seeks to minimize or maximize the

exponential growth rate of a multiplicative cost/reward.

We shall consider the cost minimization problem, where

the objective is to minimize

lim sup
n↑∞

1

n
logE

[
e
∑n−1

m=0 c(Xm,Zm)
]
. (23)

We shall assume as before that the chain is irreducible

under any stationary policy and in addition, that it is

aperiodic.



For a stationary policy v, consider the matrix Qv whose

(i, j)th element is ec(i,v(i))p(j|i, v(i)). This is a non-negative

irreducible matrix and therefore by the Perron-Frobenius

theorem, has a unique eigenvalue-eigenvector pair (λv, Vv)

with the properties: λv > 0, Vv > 0 componentwise, and

for any other eigenvalue λ′ of Qv, |λ′| < λv (because of

irreducibility and aperiodicity).

We first prove that logλv is precisely the risk-sensitive

cost associated with the policy v. Consider the eigen-

value equation QvVv = λvVv, i.e.,

λvVv(i) =
∑
j
ec(i,v(i))p(j|i, v(i))Vv(j), i ∈ S. (24)



Defining

p̃(j|i) :=
ec(i,v(i))p(j|i, v(i))Vv(j)

λvVv(i)
, i ∈ S,

we have p̃(·|·) ≥ 0 and
∑
j p̃(j|i) = 1 ∀i. Thus p̃(·|·) is

a legitimate transition probability function. It will be

irreducible aperiodic because p(·|·, v(·)) was so. Thus it

has a unique stationary distribution π̃ such that if {X̃n}

is a Markov chain with transition probability function p̃,

then by aperiodicity

E[f(X̃n)] →
∑
i
π̃(i)f(i)

for all f : S 7→ R, regardless of the initial distribution.



Let {Xn} be controlled by the stationary policy v with

X0 = i0 (say). Then

1

n
logE

[
e
∑n−1

m=0 c(Xm,v(Xm))|X0 = i0

]

=
1

n
log

 ∑
{i1,···,in}

n−1∏
m=0

ec(im,v(im))p(im+1|im, v(im))


=

1

n
log [

∑
{ik}

n−1∏
m=0

ec(im,v(im))p(im+1|im, v(im))Vv(im+1)

λvVv(im)


×λnv

Vv(i0)
Vv(in)

 ]

= logλv +
1

n

logVv(i0) + logEi0

 1

Vv(X̃n)


n↑∞→ logλv.



Thus logλv is the cost associated with the stationary

policy v. Since there are finitely many stationary policies,

there exists a stationary policy v∗ such that λv∗ = minv λv.

Let V := Vv∗, λ := λv∗. Then

λV (i) = ec(i,v
∗(i)) ∑

j
p(j|i, v∗(i))V (j), i ∈ S. (25)

We claim that

λV (i) = min
u

ec(i,u) ∑
j
p(j|i, u)V (j)

 , i ∈ S. (26)

The proof is similar to that for the additive costs.



If not, there exists a stationary policy v (obtained as the

argmin of the right hand side) such that

λV (i) ≥ ec(i,v(i))
∑
j
p(j|i, v(i))V (j), i ∈ S, (27)

with a strict inequality for at least one i, say i = i0. Then

for some δ > 0,

λV (i0) ≥ ec(i0,v(i0))
∑
j
p(j|i0, v(i0))V (j) + δ.

On the other hand,

λvVv(i) = ec(i,v(i))
∑
j
p(j|i, v(i))Vv(j), i ∈ S. (28)

Divide the LHS, resp., the RHS of (27) by the LHS, resp.,

the RHS of (28).



This leads to:

λV (i)

λvVv(i)
≥

∑
j p(j|i, v(i))Vv(j)

(
V (j)
Vv(j)

)
∑
j p(j|i, v(i))Vv(j)

=
∑
j
p̆(j|i)

V (j)

Vv(j)

 ,

for

p̆(j|i) :=
p(j|i, v(i))Vv(j)∑
k p(k|i, v(i))Vv(k)

.

This too is an irreducible transition probability with a

unique stationary distribution (say) π̆.



Furthermore,

λV (i0)

λvVv(i0)
≥

∑
j p(j|i0, v(i0))Vv(j)

(
V (j)
Vv(j)

)
∑
j p(j|i0, v(i0))Vv(j)

+
δ

λvVv(i0)

=⇒ (since λ ≤ λv)

λV (i)

λvVv(i)
≥

∑
j p(j|i, v(i))Vv(j)

(
V (j)
Vv(j)

)
∑
j p(j|i, v(i))Vv(j)

+
δ

λvVv(i0)
I{i = i0}

=
∑
j
p̆(j|i)

V (j)

Vv(j)

 +
δ

λvVv(i0)
I{i = i0}

≥
∑
j
p̆(j|i)

 λV (j)

λvVv(j)

 +
δ

λvVv(i0)
I{i = i0}



Then iterating the inequality, we have, for C := δ
λvVv(i0)

,

λV (i)

λvVv(i)
≥ E

 λV (X̆n)

λvVv(X̆n)
+ CI{X̆n = i0}



→
∑
j
π̆(j)

 λV (j)

λvVv(j)

 + Cπ̆(i0).

Taking i := the minimizer of V (·)
Vv(·), we get a contradic-

tion. So (26), the ‘DP equation for risk-sensitive con-

trol’, holds. This is an equation in unknowns (V (·), λ).



Take any other solution pair (λ′, V ′), i.e.,

λ′V ′(i) = min
u

ec(i,u) ∑
j
p(j|i, u)V ′(j)

 , i ∈ S.

Let v′ be the stationary policy such that v′(i) minimizes

the right hand side. Then λ′ = λv′. Hence λ ≤ λ′ and

therefore

λV ′(i) ≤ λvV
′(i) ≤ ec(i,v

∗(i)) ∑
j
p(j|i, v∗(i))V ′(j).

Hence

V (i)

V ′(i)
≤

∑
j p(j|i, v∗(i))V ′(j)

(
V (j)
V ′(j)

)
∑
j p(j|i, v∗(i))V ′(j)

.



Defining

p̌(·|·) =
p(j|i, v∗(i))V ′(j)∑
j p(j|i, v∗(i))V ′(j)

,

we get

V (i)

V ′(i)
≥

∑
j
p̌(j|i)

V (j)

V ′(j)

 .

Now picking i to be the minimizer on the left leads to

a contradiction unless V (·)
V ′(·) is a constant. Hence V, V ′

differ at most by a multiplicative constant. It follows

that λ = λ′.



Claim: A stationary policy v is optimal if and only if v(i)

achieves the minimum on the right hand side of (26).

The ‘if’ case is easy, because if so, (25) holds with v in

place of v∗ and the uniqueness of the principal eigenvalue

guaranteed by the Perron-Frobenius theorem implies that

λv = λ.



The ‘only if’ part follows by a familiar argument using

contradiction. If not, we have

λV (i) ≤ ec(i,v(i))
∑
j
p(j|i, v(i))V (j) ∀i,

with the inequality strict for at least one i, which then

leads to λv > λ, a contradiction. Finally, under a general

admissible {Zn} with X0 = i0 (say), we have

V (Xn) ≤ λ−1ec(Xn,Zn)E
[
V (Xn+1)|Xn, Zn

]
= λ−1ec(Xn,Zn)E

[
V (Xn+1)|Xm, Zm,m ≤ n

]
∀n,

where the equality follows from the controlled Markov

property.



Iterating and taking expectation, we have

λnV (i0) ≤ E

[
e
∑n−1

m=0 c(Xm,Zm)V (Xn)
]

Hence, since V (Xn+1) ≤ maxi |V (i)|, we have

logλ +
1

n
logV (i0) ≤

1

n
logE

[
e
∑n−1

m=0 c(Xm,Zm)
]

+
1

n
log(max

i
|V (i)|).

Letting n ↑ ∞,

logλ ≤ lim inf
n↑∞

1

n
logE

[
e
∑n−1

m=0 c(Xm,Zm)
]
.

That is, no admissible policy can do better than the

optimal stationary policy.



Policy iteration for risk-sensitive control starts with a

stationary policy v0 and at step n,

a) solves the eigenvalue problem

λnVn(i) = ec(i,vn(i))
∑
j
p(j|i, vn(i))Vn(j), i ∈ S,

for (Vn(·), λn), both > 0, and,

b) picks vn+1(i) ∈ Argmin
(
ec(i,·)

∑
j p(j|i, ·)Vn(j)

)
∀i.

Convergence in finitely many steps can be proved as

before.



The ‘relative value iteration’ algorithm starts with an

initial guess V0 and does, for a fixed i0 ∈ S,

Ṽn+1(i) = min
u

ec(i,u) ∑
j
p(j|i, u)Vn(j)

 ,

Vn+1(i) =
Ṽn+1(i)

Ṽn+1(i0)
, n ≥ 0.

Then Vn → V for the V such that V (i0) = λ. (Recall

that V is unique only up to a multiplicative scalar. This

condition renders the limit unique.)

This is a nonlinear analog of the ‘power iteration’.



Some general facts about risk-sensitive control:

Looking at the Taylor series for the exponential function,

one sees that the risk-sensitive cost captures all moments

of the cumulative cost
∑n
m=0 c(Xm, Zm), and hence can

be viewed as an extension of the ‘mean-variance’ crite-

rion. Unlike the latter, it is amenable to dynamic pro-

gramming, hence has gained some popularity in financial

problems. It also has relations to robust control.



One often puts an additional parameter κ in the expo-

nent, i.e., the cost is

lim sup
n↑∞

1

n
logE

[
eκ

∑n−1
m=0 c(Xm,Zm)

]
.

Assuming c(·, ·) > 0, the case κ > 0 corresponds to the

more common risk-averse behavior, whereas κ < 0 cor-

responds to risk-seeking behavior. Dividing the above

expression by κ and letting κ → 0, one formally recovers

the average cost as a limiting case, which therefore is

called the risk-neutral case.



Exponentiation also arises naturally in many cases due

to compounding effects.

Also note that in classical criteria, cost minimization is

equivalent to reward maximization if you set running

reward equal to negative of the running cost. In risk-

sensitive control, this is not so, you get a different

problem.



Optimal stopping:

If you stop the process at the stopping time n, you pay

stopping cost h(Xn). Otherwise you pay cost k(Xn) and

continue.

Thus the cost is

E

 τ−1∑
m=0

k(Xm) + h(Xτ)


and the objective is to minimize this over stopping times

τ . The value function V (i) is the minimum of the above

over all τ when X0 = i, i ∈ S.



The dynamic programming equation then is

V (i) = min

k(i) + ∑
j
p(j|i)V (j), h(i)



= min
u∈{0,1}

u(k(i) + ∑
j
p(j|i)V (j)) + (1− u)h(i)


and the optimal stopping time is

τ := min{n ≥ 0 : k(Xn) +
∑
j
p(j|Xn)V (Xn) ≥ h(Xn)},

i.e., the first exit time from the set

{i ∈ S : k(i) +
∑
j p(j|i)V (i) < h(i)}.



This can be written as

V (i) ≤ k(i) +
∑
j
p(j|i)V (j),

V (i) ≤ h(i),

(V (i)− k(i)−
∑
j
p(j|i)V (j))(V (i)− h(i)) = 0.

This is called a system of ‘variational inequalities’. Math-

ematically, this is an ‘obstacle problem’. LP formulation

is also possible.



A ‘mixed problem’ with additional classical control leads

to

V (i) = min

k(i, u) + ∑
j
p(j|i, u)V (j), h(i)

 .

Equivalently, we have the ‘quasi-variational inequalities’

V (i) ≤ min
u

(k(i, u) +
∑
j
p(j|i, u)V (j)),

V (i) ≤ h(i),

(V (i)−min
u

(k(i, u) +
∑
j
p(j|i, u)V (j)))(V (i)− h(i)) = 0.



Impulse control:

Here one can reset the trajectory from i to j with cost

c(i, j). Consider the discounted cost with discount factor

α ∈ (0,1) given by

E

 ∞∑
m=0

αmk(Xm) +
∞∑

m=0
ατmc(X−

τm, X
+
τm)

 .
The optimization is over the stopping times {τn}.



One assumes c(i, i) = 0 and

c(i, k) < c(i, j) + c(j, k) ∀ i, j, k.

This avoids some pathologies. The dynamic program-

ming equation is

V (i) = min

k(i) + α
∑
j
p(j|i)V (j),min

j
(c(i, j) + V (j))

 .

The optimal decision is to continue if the first term in

the outer parentheses is ≤ the second and reset the state

to argmin(c(i, ·) + V (·)) otherwise. Extensions to mixed

problems and other cost criteria are possible.



Variational inequalities:

V (i) ≤ k(i) + α
∑
j
p(j|i)V (j),

V (i) ≤ min
j

(c(i, j) + V (j)),

0 = (V (i)− (k(i) + α
∑
j
p(j|i)V (j))×

(V (i)−min
j

(c(i, j) + V (j))).

Quasi-variational inequalities for mixed problems can be

written analogously.



Switching control:

Switching cost c(u, u′) associated with changing control

from u to u′ satisfies

c(u, u′) < c(u, u′′) + c(u′′, u′) ∀ u, u′, u′′.

The dynamic programming equation is

V (i, u) = min (k(i, u) + α
∑
j
p(j|i, u)V (j, u),

min
v

(c(u, v) + V (i, v))).



The optimal decision is to continue with the current con-

trol u if the first term in the outer parentheses is ≤ the

second, otherwise switch to v := the minimizer of the

second term. Extensions to mixed problems and other

cost criteria are possible. Variational/quasi-variational

inequality formulations are also possible.



Partially observed MDPs

Partially observed Markov Decision Processes (POMDPs)

have, in adition to (Xn, Zn), an observation process {Yn}
taking values in a finite observation space H, with an

associated transition kernel

(i, u, j, y) ∈ S × U × S ×H 7→ p(j, y|i, u) ∈ [0,1]

with
∑
j,y p(j, y|i, u) = 1 ∀ i, u, and for n ≥ 0,

P (Xn+1 = j, Yn+1 = y|Xm.Ym, Zm,m ≤ n) = p(j, y|Xn, Zn).

Examples: 1. Xn = (X1
n, X

2
n), Yn = X2

n.

2. p(j, y|i, u) = p(j|i, u)q(y|j). (q(·|·) ≈ ‘communication

channel’).



The idea is that only {Yn} is observed, {Xn} is not, and

the control Zn at time n therefore can depend only on

past observations and controls Ym,m ≤ n;Zm,m < n,

and possibly some independent extraneous randomiza-

tion, but not on {Xm}.

A natural thing to do is to consider

πn(i) := P (Xn = i|Ym,m ≤ n;Zm,m < n)

for i ∈ S, n ≥ 0. Then πn := [πn(1), · · · , πn(s)] is a ran-

dom probability vector that is the conditional distribution

of Xn given past observations Ym,m ≤ n, and controls

Zm,m < n.



{πn} (written as a row vector) is given recursively by

πn+1 =
πnP (Zn, yn+1)

πnP (Zn, yn+1)1
, n ≥ 0, (29)

where πn is written as a row vector and,

• yn+1 is the observed value of Yn+1,

• P (u, y) for u ∈ U, y ∈ H, is a substochastic matrix

whose (i, j)th element is p(j, y|i, u),

• 1 := [1,1, · · · ,1]T ∈ Rs,



• π0 := the distribution of X0.

Equivalently,

πn+1(i) =
∑
j πn(j)p(i, yn+1|j, Zn)∑

j,k πn(j)p(k, yn+1|j, Zn)
.

Numerator of the RHS

=
∑
i
P (Xn = j|Ym,m ≤ n;Zm,m < n)×

P (Xn+1 = i, Yn+1 = yn+1|Xn = j, Zn)

=
∑
i
P (Xn = j|Ym,m ≤ n;Zm,m < n)×

P (Xn+1 = i, Yn+1 = yn+1|Xn = j, Zm,m ≤ n;Ym,m ≤ n)

= P (Xn+1 = i, Yn+1 = yn+1|Zm,m ≤ n;Ym,m ≤ n).



Here we use the conditional independence of Xn and Zn

given Ym,m ≤ n;Zm,m < n. Similarly, the denominator

of RHS

=
∑
i
P (Xn+1 = i, Yn+1 = yn+1|Zm, Ym,m ≤ n)

= P (Yn+1 = yn+1|Zm, Ym,m ≤ n).

Thus the ratio is

P (Xn+1 = i, Yn+1 = yn+1|Zm, Ym,m ≤ n)

P (Yn+1 = yn+1|Zm, Ym,m ≤ n)
= P (Xn+1 = i|Zm,m ≤ n;Ym,m ≤ n+1)

= πn+1(i) = the LHS.



The formula (29) is an example of a nonlinear filter.

Note also that

P (Yn+1 = y|Ym, Zm,m ≤ n) =
∑
i,j

p(j, y|i, Zn)πn(i),

which depends on past, i.e., Ym, Zm,m ≤ n, only through

πn. Along with (29), this implies that {πn} is a controlled

Markov chain taking values in P(S) := the simplex of

probability vectors on S.



Consider, e.g., the discounted cost

E

 ∞∑
m=0

αmk(Xm, Zm)


= E

 ∞∑
m=0

αmE[k(Xm, Zm)|Yi, Zi, i ≤ m]


= E

 ∞∑
m=0

αmk̄(πm, Zm)


for

k̄(π, u) :=
∑
i
π(i)k(i, u).

Let V (π) denote the value function, i.e., the infimum of

the above cost over all admissible controls when π0 = π.



The corresponding dynamic programming equation

becomes

V (π) = min
u

k̄(π, u) + α
∑
i,j

π(i)p(j, y|i, u)V
 πP (u, y)

πP (u, y)1


 .

(30)

Dynamic programming equation for finite horizon control

can be written analogously.

Standard arguments show that if v(π) attains the mini-

mum on the right, then the ‘stationary policy’ Zn = v(πn)

is optimal.



There are some technicalities involved in ensuring that

the v here is a nice (i.e., measurable) function. These

can be taken care of easily in the finite set-up here. One

can also prove by induction that the Zn defined thus de-

pends only on Ym,m ≤ n, so that it is admissible.

The more complicated criteria such as average and risk-

sensitive costs are harder to analyze and have been han-

dled only in special cases, if at all. The key difficulty

is the counterpart of ‘irreducibility’ for this controlled

Markov chain, which is generally unavailable.



Constrained MDPs

Example: Minimize

lim sup
N↑∞

1

N

N−1∑
m=0

E[k(Xm, Zm)]

subject to

lim sup
N↑∞

1

N

N−1∑
m=0

E[c(Xm, Zm)] ≤ C.

More than one constraint is also possible.



Using LP formulation, one sees that this simply adds one

more constraint to the LP.

On the other hand, using Lagrange multiplier λ, this can

be reduced to the unconstrained MDP with running cost

k(i, u) + λc(i, u).

These can be solved by ‘primal-dual’ methods.


